TC Observations
- Yu, C.- K.*, L.- W. Cheng, C.- C. Wu, and C.- L. Tsai, 2020: Outer tropical cyclone rainbands associated with Typhoon Matmo (2014). Mon. Wea. Rev., 148, 2935-2952, doi: 10.1175/MWR-D-20-0054.1.
- Yu, C.- K.*, C.- Y. Lin, and J.- S. Luo, 2019: Tracking a long-lasting outer tropical cyclone rainband: Origin and convective transformation. J. Atmos. Sci., 76, 3267-3283, doi: 10.1175/JAS-D-19-0126.1.
- Chen, Y.- C.*, K.- T. Chang, S.- F. Wang, J.- C. Huang, C.- K. Yu, J.- Y. Tu, H.- J. Chu and C.- C. Liu, 2019: Controls of preferential orientation of earthquake- and rainfall-triggered landslides in Taiwan’s orogenic mountain belt. Earth Surf. Process. Landforms, doi:10.1002/esp.4601.
- Yang, C.- C., C.- C. Wu*, and K. K. W. Cheung, 2018: Diagnosis of large prediction errors on recurvature of Typhoon Fengshen (2008) in the NCEP-GFS model. J. Meteor. Soc. Japan, 96, 85-96, doi: 10.2151/jmsj. 2018-009.
- Yu, C.- K.*, C.- Y. Lin, L.- W. Cheng, J.- S. Luo, C.- C. Wu, and Y. Chen, 2018: The degree of prevalence of similarity between outer tropical cyclone rainbands and squall lines. Sci. Rep., 8, 8247, doi: 10.1038/s41598-018-26553-8.
- Schomakers, J., H. Mayer, J.- Y. Lee, T.- Y. Lee, S.- H. Jien, A. Mentler, T. Hein, J.- C. Huang, Z.- Y. Hseu, L.- W. Cheng, C.- K. Yu, and F. Zehetner*, 2018: Soil aggregate breakdown and carbon release along a chronosequence of recovering landslide scars in a subtropical watershed. Catena, 165, 530-536, doi: 10.1016/j.catena.2018.03.004.
TC-ocean interaction
- Chih, C.- H. and C.- C. Wu*, 2020: Exploratory analysis of upper ocean heat content and sea surface temperature underlying tropical cyclone rapid intensification in the western North Pacific. J. Climate, 33, 1031-1050, doi: 10.1175/JCLI-D-19-0305.1.
- Lin, I- I*, S. J. Camargo, C. M. Patricola, J. Boucharel, S. Chand, P. Klotzbach, J. C. L. Chan, B. Wang, P. Chang, T. Li, and F.- F. Jin, 2020: ENSO and Tropical Cyclones. In El Niño Southern Oscillation in a Changing Climate (eds M. J. McPhaden, A. Santoso, W. Cai). American Geophysical Union., Chap. 17, pp. 377-408, doi: 10.1002/9781119548164.ch17 (Invited Chapter).
- Domingues, R., G. J. Goni, J. A. Knaff, I- I Lin, and F. Bringas, 2020: Tropical Cyclone Heat Potential [in "State of the Climate in 2019"], Bulletin of the American Meteorological Society, Vol. 101, No. 8, S227-S229, doi: 10.1175/BAMS-D-20-0077.1.
- Chang, Y.- T., I- I Lin*, H.- C. Huang, Y.- C. Liao, and C.- C. Lien, 2020: The association of typhoon intensity increase with translation speed increase in the South China Sea, Sustainability, 12, 939, doi: 10.3390/su12030939.
- Sui, C.- H.*, P.- H. Lin, W.- T. Chen, S. Jan, C.- Y. Liu, Y. J. Yang, C.- H. Liu, J.- M. Chen, M.- J. Yang, J.- S. Hong, L.- H. Hsu, and L.- S. Tseng, 2020: The South China Sea Two Islands Monsoon Experiment for studying convection and subseasonal to seasonal variability. Terr. Atmos. Ocean. Sci., 31, 103-129, doi: 10. 3319/TAO.2019.11. 29. 02.
- Wu, Y.- C., M.- J. Yang*, and P.- H. Lin, 2020: Evolution of water budget and precipitation efficiency of mesoscale convective systems over the South. Terr. Atmos. Ocean. Sci., 31, 141-158, doi: 10.3319/TAO.2019.07.17.01.
Tu, C.- C., Y.- L. Chen*, P.- L. Lin and P.- H. Lin, 2020: The relationship between the boundary layer moisture transport from the South China Sea and heavy rainfall over Taiwan. Terr. Atmos. Ocean. Sci., 31, 159-176, doi: 10.3319/TAO.2019.07.01.01. - Tsai, W. Y.- H., M.- M. Lu, C.- H. Sui, and P.- H. Lin, 2020: MJO and CCEW modulation on South China Sea and Maritime Continent boreal winter subseasonal peak precipitation. Terr. Atmos. Ocean. Sci., 31, 177-195, doi: 10.3319/TAO.2019.10.28.01.
- Lu, M.- M., C.- H. Sui*, J.- R. Sun and P.- H. Lin, 2020: Influences of Subseasonal to Interannual Oscillations on the SCS summer monsoon onset in 2018. Terr. Atmos. Ocean. Sci., 31, 197-209, doi: 10.3319/TAO.2020.02.25.01.
- Chen, J.- M.*, P.- H. Lin, C.- H. Wu and C.- H. Sui, 2020: Track variability of South China Sea-formed tropical cyclones modulated by seasonal and intraseasonal circulations. Terr. Atmos. Ocean. Sci., 31, 239-259, doi: 10.3319/TAO.2019.11.07.02.
- Domingues, R., G. J. Goni, J. A. Knaff, I- I Lin, and F. Bringas, 2019: Tropical Cyclone Heat Potential [in "State of the Climate in 2018"], Bulletin of the American Meteorological Society, Vol. 100, No. 9, S133-S135, doi:10.1175/2019BAMSStateoftheClimate.1.
- Domingues, R.*, A. Kuwano-Yoshida, P. Chardon-Maldonado, R. E. Todd, G. R. Halliwell, H.- S. Kim, I- I Lin, K. Sato, T. Narazaki, L. K. Shay, T. Miles, S. Glenn, J. A. Zhang, S. R. Jayne, L. R. Centurioni, M. Le Hénaff, G. Foltz, F. Bringas, MM Ali, S. DiMarco, S. Hosoda, T. Fukuoka, B. LaCour, A. Mehra, E. R. Sanabia, J. R. Gyakum, J. Dong, J. Knaff, and G. J. Goni, 2019: Ocean Observations in Support of Studies and Forecasts of Tropical and Extratropical Cyclones, Frontiers in Marine Science, 6, 446, doi: 10.3389/fmars.2019.00446.
- Pun, I.- F.*, J. C. L. Chan, I- I Lin, K. T. F. Chan, J. F. Price, D. S. Ko, C.- C. Lien, Y.- L. Wu, and H.- C. Huang, 2019: Rapid Intensification of Typhoon Hato (2017) over Shallow Water, Sustainability, 11(13), doi:10.3390/su11133709.
- Pun, I.- F.*, I- I Lin, C.- C. Lien, and C.-C. Wu, 2018: Influence of the size of supertyphoon Megi (2010) on SST cooling. Mon. Wea. Rev., 146, 661-677, doi: 10.1175/MWR-D-17-0044.1.
- Goni, G. J., J. A. Knaff, I- I Lin, and R. Domingues, 2018: Tropical Cyclone Heat Potential, [in “State of the Climate in 2017”]. Bull. Amer. Meteor. Soc., 99(8), S129-S132, doi: 10. 1175/2018BAMSStateoftheClimate.1.
TC intensity
- Lin, Y.- F., C.- C. Wu*, T.- H. Yen, Y.- H. Huang, and G.- Y. Lien, 2020: Typhoon Fanapi (2010) and its interaction with Taiwan terrain – Evaluation of the uncertainty in track, intensity and rainfall simulations. J. Meteor. Soc. Japan, 98, 93-113, doi:10.2151/jmsj.2020-006.
- Cheng, C.- J., and C.- C. Wu*, 2020: The role of WISHE in the rapid intensification of tropical cyclones. J. Atmos. Sci., 77, 3139-3160, doi: 10.1175/JAS-D-20-0006.1.
- Hu, C.- C., and C.- C. Wu*, 2020: Ensemble sensitivity analysis of tropical cyclone intensification rate during the development stage. J. Atmos. Sci., 77, 3387-3405, doi: 10.1175/JAS-D-19-0196.1.
- Lee, J.- D., C.- C. Wu*, and K. Ito, 2020: Diurnal variation of the convective area and eye size associated with the rapid intensification of tropical cyclones, Mon. Wea. Rev., 148, 4061-4082, doi: 10.1175/MWR-D-19-0345.1.
- Peng, C.- H., and C.- C. Wu*, 2020: The impact of outer-core surface heat fluxes on the convective activities and rapid intensification of tropical cyclones. J. Atmos. Sci., 77, 3907-3927, doi: 10.1175/JAS-D-19-0348.1.
- Chen, G.*, C.- C. Wu, and Y.- H. Huang, 2018: The role of near-core convective and stratiform heating/cooling in tropical cyclone structure and intensity. J. Atmos. Sci., 75, 297-326, doi: 10.1175/JAS-D-17-0122.1.
- Huang, Y.- H., C.-C. Wu*, and M. T. Montgomery, 2018: Concentric eyewall formation in Typhoon Sinlaku (2008). Part III: Horizontal momentum budget analyses. J. Atmos. Sci., 75, 3541-3563, doi: 10.1175/JAS-D-18-0037.1.
- Cheng, C.- J., and C.- C. Wu*, 2018: The role of WISHE in secondary eyewall formation. J. Atmos. Sci., 75, 3823-3841, doi: 10.1175/JAS-D-17-0236.1.
- Lee, J.- D., and C.- C. Wu*, 2018: The role of polygonal eyewalls in rapid intensification of Typhoon Megi (2010). J. Atmos. Sci., 75, 4175-4199, doi: 10.1175/JAS-D-18-0100.1 .
Others (TC Motion, TC-terrain interaction, orographic rainfall, MJO, air-sea interaction etc.)
- Ito, K., C.- C. Wu, K. Chan, R. Toumi, and C. Davis, 2020: Recent progress in the fundamental understanding of tropical cyclone motion. J. Meteor. Soc. Japan, 98, 5-17, doi:10.2151/jmsj.2020-001.
- Chang, W.- Y., G.- W. Lee*, B. J.- D. Jou, W.- C. Lee, P.- L. Lin, and C.- K. Yu, 2020: Uncertainty in measured raindrop size distributions from four types of collocated instruments. Remote Sens., 12(7), 1167, doi: 10.3390/rs12071167.
- Huang, G.- Z., T.- C. Hsu, C.- K. Yu, J.- C. Huang*, and T.- C. Lin*, 2020: Dilution and precipitation dominated regulation of stream water chemistry of a volcanic watershed. J. Hydrol., 583, 124564, doi: 10.1016/j.jhydrol.2020.124564.
- Hwang, W.- C., P.- H. Lin*, and H. Yu, 2020: The development of the “Storm Tracker” and its application for atmospheric high-resolution upper-air observation. Atmos. Meas. Tech., 13, 5395-5406, doi: 10.5194/amt-13-5395-2020.
- Cheng, L.- W., and C.- K. Yu*, 2019: Investigation of orographic precipitation over an isolated, three-dimensional complex topography with a dense gauge network, radar observations, and upslope model. J. Atmos. Sci., 76, 3387-3409, doi: 10.1175/JAS-D-19-0005.1.
- Huang, K.-C. and C.-C. Wu*, 2018: The impact of idealized terrain on upstream tropical cyclone track. J. Atmos. Sci., 75, 3887-3910, doi: 10.1175/JAS-D-18-0099.1.
- Tsai, C.- L.*, K. Kim, Y.- C. Liou, G.- W. Lee and C.- K. Yu, 2018: Impacts of topography on airflow and precipitation in the Pyeongchang area seen from multiple-Doppler radar observations. Mon. Wea. Rev., 146, 3401-3424, doi: 10.1175/MWR-D-17-0394.1.